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LETTER TO THE EDITOR 

Corner critical exponents from the mean-field 
renormalisation group 

J 0 Indekeut and G Menu 
Katholieke Universiteit Leuven, Laboratorium voor Molekuulfysika, Celestijnenlaan 200 D, 
8-3030 Leuven, Belgium 

Received 14 March 1988 

Abstract. The previously introduced method of mean-field renormalisation has provided 
a unified approach to bulk and surface critical behaviour. The method is currently used 
for the computation of the critical exponent associated with the order parameter at corners. 
Applications to the square and triangular Ising model are presented. The angle dependence 
of the corner critical exponent is qualitatively reproduced. The results for the bulk critical 
exponents are more accurate than in previously employed mean-field renormalisation 
schemes. 

The mean-field renormalisation group (MFRG) (Indekeu et a1 1982, Stella 1984) has 
been widely used as a tool for semiquantitative computations of bulk critical points 
and critical exponents. The method is characterised by its easy and broad applicability 
which originates from its affinity to classical approximations as far as computational 
input is concerned. The potential power of the approach lies in the combination of 
classical approximations on the one hand, and scaling and renormalisation group ideas 
on the other. The areas of application include geometrical critical phenomena and 
percolation, classical and quantum spin models, both ordered and disordered, dynami- 
cal critical phenomena, and surface critical phenomena. 

Recently it has been shown that the MFRG can be cast in a form which makes 
explicit its relationship to standard finite-size scaling. From this development has 
resulted a unifying approach to bulk and surface critical behaviour (Indekeu et a1 
1987). It has turned out that the most natural and consistent implementation of MFRG 

simultaneously provides estimates for bulk and surface critical exponents. Also the 
accuracy of the method has been improved because the unifying scheme guarantees 
convergence to exact results (assuming the validity of standard finite-size scaling). 

In the present letter another unifying scheme is developed which allows the 
computation of the corner critical exponent, i.e. the critical exponent which describes 
the vanishing of the order parameter at a corner when the system approaches criticality 
in bulk (Cardy 1983). The present approach can be viewed as a refinement of the 
unifying approach to bulk and surface critical behaviour. Indeed, along the surface 
of, e.g., a two-dimensional system, we now differentiate between edges and corners, 
because they give rise to different scaling behaviours for the local-order parameter. 
Similarly, in a three-dimensional system, one can decompose the surface into faces, 
edges and corners and distinguish the corresponding scaling properties. From now 
on attention will be restricted to two-dimensional systems ( d  = 2). 
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For concreteness, let us consider the ferromagnetic nearest-neighbour Ising model 
on two-dimensional lattices. The reduced Hamiltonian is 

where si = kl, P = l / k B  T, K is the nearest-neighbour coupling, and h is the external 
magnetic field. 

For a cluster of N interacting spins (e.g., a square cluster on the square lattice) 
the average magnetisation per spin is defined as 

Within the MFRG approach mN is computed in the presence of an efective magnetisation 
b acting on the surface (or boundary) of the cluster. This gives rise to an efectivefield 
equal to a K b  acting on a surface spin with a nearest neighbours outside the cluster. 
In the example of a square cluster on the square lattice, a = 1 for the surface spins 
along the edges, and a = 2  at the corners. 

It follows from finite-size-scaling hypotheses that for finite, but large, systems with 
bulk coupling K ,  magnetic bulk field h, and with a magnetic surfacefield h, acting on 
the surface spins (except at corners), and with a magnetic cornerJield h, acting on the 
corner spins, the following homogeneity should hold near criticality for the dimension- 
less free energy per site f :  

f N ‘ ( K c +  LyT AK, LYHh, LYHsh,, LYHch,) = L d f N ( K c + A K ,  h, h,, h,) (3) 

where K ,  denotes the critical value of K .  For the two-dimensional Ising model at the 
‘ordinary’ transition the critical exponent YHs takes the value 5 (Binder 1983) and 

Y H C  = -IT128 (4) 

(Barber et a1 1984) where 8 is the angle spanned by the edges of the system. The 
latter result follows from pc = r/28 and pc = ( d  - 2 - YHc)/ YT. Note that the corner 
exponent depends on the angle and is thus less universal than surface or bulk exponents. 
We will consider corners with 8 = r / 2 ,   IT/^ and 21~13. These angles occur most 
naturally in squares (or rectangles) on the square lattice, and in triangles and diamonds 
on the triangular lattice. 

In order to obtain full consistency between the MFRG method and finite-size scaling, 
it is important to take into account that in a cluster all surface spins are subjected to 
an effective field proportional to Kb. In the thermodynamic limit, where the distinction 
between bulk, edges and corners is well defined, the system is consequently under the 
influence of a surface field 

h,- K b  ( 5 )  

and a cornerJield 

h,- Kb. 

At this point it is clear that, strictly speaking, we must differentiate between the 
effective magnetisation b along the edges, b,,  and at corners, b,, because we must 
allow different scaling properties for h,  and h,. Also, it makes sense physically that 
the effective magnetisations which surround the cluster depend on the local surface 
geometry. Indeed, similar inhomogeneities are found in a more refined approach where 
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the effective magnetisations do not merely represent the 'mean field', but rather the 
'reaction field' which depends on the spin fluctuations close to the surface inside the 
cluster (Indekeu et a1 1984). 

The distinction between b, and b, can be avoided as far as the computation of the 
surface exponent YHs is concerned (Indekeu et a1 1987) because in the thermodynamic 
limit the corners become negligible compared to the edges. When the distinction 
between b, and b, is made, as is presently done, the unifying bulk-surface approach 
allows the computation of YHc. 

In view of ( 5 )  and ( 6 )  we postulate that, close to criticality and for very large 
clusters, the effective magnetisations must scale like their associated surface fields, i.e. 

b: = L 'HSb, ( 7 )  

b: = L YHcb,. ( 8 )  

As in previous applications of MFRG, it is worth stressing that for small clusters, 
i.e. the clusters one works with in practice, the distinction between bulk and surface 
(and between edges and corners) is not always easily made. Nevertheless it has often 
been shown, and it will once more be demonstrated in the present development, that 
the more consistent the approach is made, the more accurate are the determinations 
of the bulk critical exponents. 

For computing the corner critical exponent the following strategy is proposed. 
Consider three clusters of sizes N, N' and N" (in decreasing order) and impose the 
equations (with b, = 0, b, Z 0 ) :  

m N , ( K ' ,  h',  bL)= L:-'HmN(K, h, b,) ( s a )  

mN"( K", h", b,") = L$-'HmN,( K ,  h, b,) ( 9 b )  

b: = L,yHcb, ( l o a )  

b," = L>cb, ( l o b )  

where L ,  = ( N / N ' ) " d  and L2 = ( N'/N'')''d according to the traditional definition of 
length rescaling adopted in MFRG. (This definition is somewhat ad hoc, but becomes 
equivalent to any other sensible definition (e.g., Slotte 1987) as N, N ' ,  N " + w  in a 
regular progression of sizes.) 

Note that we now have at our disposal a computational scheme from which K , ,  
YT, YH and YHc can be obtained, in a way which is technically very similar to that 
employed for obtaining K,, YT, YH and YHs (Indekeu et a1 1987). 

We proceed to apply the method to the square and triangular Ising models. On 
the square lattice, we work with square clusters ( N  = p 2 ) .  Our results are presented 
in table 1 .  For comparison, the results obtained previously with the surface-exponent 
scheme (Indekeu et a1 1987) are given in table 2. 

The next application is devoted to the triangular Ising model. There, different 
angles can be studied in an elegant manner. First we use equilateral triangles ( N  = 
p ( p  + 1 ) / 2 )  and compute the corner exponent for 6 = 1r /3 .  The results are shown in 
table 3. We have also carried out the surface-exponent scheme and obtained the 
estimates presented in table 4. 

Finally, we make use of diamond cells ( N  = p 2 )  on the triangular lattice in order 
to be able to compute the corner exponents for two different angles simultaneously. 
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Table 1 .  Results for critical point, bulk and corner critical exponents in the square Ising 
model using square clusters. The angle at the corners is n /2 .  

YHN'."' yrp' (n/2) YE>"' ( T P )  N N '  N"  K ,  y Y N '  YT"."' y;"' 

16 9 4 0.469 0.92 0.88 1.78 1.72 -0.57 -0.51 
25 16 9 0.459 0.94 0.92 1.80 1.76 -0.63 -0.60 
Exact 0.441 1 1 1.875 1.875 -1 -1 

Table 2. Results previously reported by lndekeu et al (1987) for critical point, bulk and 
surface critical exponents in the square Ising model using square clusters. 

16 9 4 0.425 0.86 0.82 1.68 1.65 0.49 0.52 
25 16 9 0.430 0.89 0.87 1.71 1.69 0.49 0.51 
Exact 0.441 1 1 1.875 1.875 0.5 0.5 

Table 3. Results for critical point, bulk and corner critical exponents, in the triangular 
Ising model using equilateral trangles. The angle at the corners is n /3 .  

10 6 3 0.315 0.90 0.85 1.76 1.67 -0.76 -0.67 
15 10 6 0.302 0.91 0.88 1.79 1.73 -0.86 -0.80 
21 15 10 0.295 0.92 0.90 1.81 1.77 -0.94 -0.90 
28 21 15 0.290 0.93 0.91 1.82 1.79 - 1 .00 -0.97 
Exact 0.275 1 1 1.875 1.875 -1.5 -1.5 

Table 4. Results for critical point, bulk and surface critical exponents, in the triangular 
Ising model using equilateral triangles, obtained by the surface-exponent scheme. 

YT"."' y ; N '  YE"" Y;"' Y:;"' N N' N"  K ,  yYN' 

10 6 3 0.261 0.80 0.75 1.61 1.55 0.56 0.61 
15 10 6 0.265 0.84 0.81 1.66 1.62 0.54 0.57 
21 15 10 0.267 0.87 0.85 1.69 1.66 0.52 0.54 
28 21 15 0.269 0.89 0.87 1.71 1.69 0.5 1 0.53 
Exact 0.275 1 1 1.875 1.875 0.5 0.5 

The diamonds have two corners with 6 = ~ 1 3  and two with 8 = 2 ~ 1 3 .  The results for 
8 = ~ / 3  are displayed in table 5 and those for 8 = 2 ~ / 3  in table 6 .  Note that the ratio 
of the corner exponents is the inverse ratio of the angles (4). This ratio is deduced 
from the data in tables 5 and 6, and the results are shown in table 7. Finally, in table 
8 the results are presented which are obtained with the surface-exponent scheme. 

We now proceed to discuss our results. The estimates which we have obtained for 
the corner critical exponent are qualitatively sound but are much less accurate than 
the estimates for the bulk and surface exponents. The angle dependence of y,, is 
qualitatively reproduced. The calculation which makes use of the diamond cells allows 
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Table 5. Results for critical point, bulk and corner critical exponents, in the triangular 
Ising model using diamond clusters. The corner field is switched on at the two corners 
with n / 3  angles only. 

N N '  N "  K ,  yYN' YTN'."' y ; N '  YE'."' Y,";"' (n /3 )  U,";"' ( n / 3 )  

16 9 4 0.305 0.92 0.87 1.81 1.72 -0.85 -0.76 
25 16 9 0.295 0.94 0.91 1.83 1.78 -0.95 -0.90 
Exact 0.275 1 1 1.875 1.875 -1.5 -1.5 

Table 6. Results for critical point, bulk and corner critical exponents, in the triangular 
Ising model using diamond clusters. The corner field is switched on at the two corners 
with 2n/3 angles only. 

16 9 4 0.272 0.89 0.84 1.69 1.63 -0.59 -0.53 
25 16 9 0.273 0.91 0.89 1.73 1.69 -0.63 -0.59 
Exact 0.275 1 1 1.875 1.875 -0.75 -0.75 

Table 7. Ratios of corner exponents, in the triangular lsing model using diamond clusters, 
for two different angles n / 3  and 2n/3. 

N N '  N" Y;?' (n /3 ) /  Y;:' (2n/3) YE>"' (n /3 ) /  YE;"' (2n/3) 

16 9 4 1.43 
25 16 9 1.52 
Exact 2 

1.42 
1.51 
2 

Table 8. Results for critical point, bulk and surface critical exponents, in the triangular 
Ising model using diamond clusters, obtained by the surface-exponent scheme. 

N N '  N" K ,  y Y N '  y;'r"' y ; N '  y ; ' . N ' '  y ?sN ' yr;"'' 

16 9 4 0.264 0.85 0.80 1.66 1.61 0.52 0.57 
25 16 9 0.268 0.88 0.86 1.70 1.68 0.51 0.54 
Exact 0.275 1 1 1.875 1.875 0.5 0.5 

the direct comparison of yHc( ~ / 3 )  and y, ,(2~/3),  because in that calculation the two 
angles can be studied simultaneously. The ratios in table 7 exhibit the correct trend, 
even though they are still far from the exact value. 

It is also interesting to compare yHc( ~ / 3 )  obtained using equilateral triangles (table 
3) with the same exponent computed using diamonds (table 5 ) .  One notes that for 
comparable pairs of cluster sizes the exponent values are much alike, which is quite 
satisfactory. It would be interesting to go further along this line of comparison and 
compute yHC(2r/3)  also on hexagonal clusters and confront the results with those 
computed on diamonds. This is not practicable, however, because the hexagons consist 
of N"= 7, NI= 19 and N = 39 spins, which is too large for our method of exact 
evaluation of thermal averages. 
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Another interesting comparison is that between the yHc exponents on the triangular 
and the square lattice for identical pairs of sizes. When yHc(.rr/3) from table 5 is 
compared with yHc(r/2) from table 1,  the ratios turn out to be very nearly exact. This 
success is, however, fortuitous in view of the disappointing fact that yHc( ~ / 2 )  is hardly 
distinguishable from yHc(2r/3) in table 6. 

Another point of interest concerns the value of pc = -yHc/yT = ?r/28 which 
describes the vanishing of the spontaneous corner magnetisation m, as the critical 
point is approached in bulk. For angles 8 >  .rr/2, /3,< 1,  which means that m, 
approaches zero with infinite slope as the critical temperature is approached. This 
behaviour is similar to that of the bulk or surface magnetisation. For 0 < .n/2 qualita- 
tively different behaviour occurs since pc> 1 which signifies an approach with zero 
slope. Note that, in spite of our generally poor numerical values of yHC, the two 
qualitatively different behaviours are emerging. Indeed, the results for large sizes in 
tables 3 and 5 already clearly show that Pc> 1 for 0 = 7r/3. 

Finally, a remarkable feature apparent from the tables and from comparisons with 
earlier MFRG works is that the bulk exponents are obtained more accurately with the 
present corner-exponent scheme than with previously developed schemes. 

It is a great pleasure to thank Professor P W Kasteleyn for valuable remarks which 
lie at the basis of the present refinement of the MFRG methodology. 
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